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Abstract
We discuss Coleman’s theorem concerning the energy density of the ground
state of the sine-Gordon model proved in Coleman S (1975 Phys. Rev. D 11
2088). According to this theorem the energy density of the ground state of the
sine-Gordon model should be unbounded from below for coupling constants
β2 > 8π . The consequence of this theorem would be the non-existence of the
quantum ground state of the sine-Gordon model for β2 > 8π . We show that
the energy density of the ground state in the sine-Gordon model is bounded
from below even for β2 > 8π . This result is discussed in relation to Coleman’s
theorem (Coleman S 1973 Commun. Math. Phys. 31 259), particle mass
spectra and soliton–soliton scattering in the sine-Gordon model.

PACS numbers: 11.10.Ef, 11.10.Gh, 11.10.Kk

1. Introduction

As has been shown in [1, 2] the massless Thirring model is unstable under spontaneous
breaking of chiral U(1) × U(1) symmetry. The non-perturbative phase of spontaneously
broken chiral symmetry is described by a ground-state wavefunction of BCS-type [1].

The Lagrangian of the massless Thirring model is given by [1–3]

LTh(x) = ψ̄(x)iγ µ∂µψ(x) − 1
2gψ̄(x)γ µψ(x)ψ̄(x)γµψ(x) + σ(x)ψ̄(x)ψ(x) (1.1)

where σ(x) is an external source of the scalar density ψ̄(x)ψ(x) of the Thirring fermion fields
and g is the coupling constant, which we treat in the attractive case. For σ(x) = −m [2],

1 Permanent address: Department of Nuclear Physics, State Technical University, 195251 St Petersburg, Russia.

0305-4470/03/287839+19$30.00 © 2003 IOP Publishing Ltd Printed in the UK 7839

http://stacks.iop.org/ja/36/7839


7840 M Faber and A N Ivanov

where m can be interpreted as a mass of Thirring fermion fields, the Thirring model (1.1)
bosonizes to the sine-Gordon model with the Lagrangian [1, 2]

LSG(x) = 1

2
∂µϑ(x)∂µϑ(x) +

α0

β2
(cos βϑ(x) − 1) (1.2)

where α0 and β are positive parameters [1, 2, 4]. The parameter α0 has the meaning of a
squared mass of the quantum of the sine-Gordon field

LSG(x) = 1

2
∂µϑ(x)∂µϑ(x) +

α0

β2
(cos βϑ(x) − 1)

= 1

2
∂µϑ(x)∂µϑ(x) − 1

2
α0ϑ

2(x) +
1

4!
α0β

2ϑ4(x) + · · · (1.3)

and β is a coupling constant. For the Thirring fermion fields quantized in the chirally broken
phase the coupling constants g and β are related by [1]

8π

β2
= 1 − e−2π/g. (1.4)

The direct consequence of this relation is that β2 > 8π . As has been discussed in [1],
the relation β2 > 8π leads to a (1+1)-dimensional world populated mainly by soliton and
antisoliton states [1], which are classical solutions of the equations of motion of the sine-
Gordon model (1.2)

�ϑ(x) +
α0

β
sin βϑ(x) = 0 (1.5)

regardless of the value of the coupling constant β. It is well known that there exists an
infinite set of dynamical many-soliton solutions of (1.5) which are collective excitations of the
sine-Gordon field [5].

As an example, the one-soliton and one-antisoliton solutions ϑs(x
0, x1) and ϑs̄(x

0, x1)

ϑs(x
0, x1) = 4

β
arctan(exp(+

√
α0γ (x1 − ux0))

(1.6)
ϑs̄(x

0, x1) = 4

β
arctan(exp(−√

α0γ (x1 − ux0))

where u is their velocity and γ = 1/
√

1 − u2 is the Lorentz factor, have a finite classical mass,
Ms = Ms̄ = 8

√
α0/β

2, and are not related to the quantum ground state of the sine-Gordon
model.

In his pioneering paper [4], Coleman has proved the equivalence between the massive
Thirring model and the sine-Gordon model. A lateral result of Coleman’s paper [4] was the
proof of the theorem asserting that for β2 > 8π the energy density of the sine-Gordon model
is unbounded from below. Due to this Coleman argued ‘The theory has no ground state, and
is physically nonsensical’ [4]. In this paper we discuss critically this theorem of Coleman
and show that the energy of the ground state of the sine-Gordon model is bounded even for
β2 > 8π .

This paper is organized as follows. In section 2 we repeat Coleman’s derivation of the
theorem asserting the non-existence of the ground state in the sine-Gordon model for β2 > 8π

and accentuate those places where we do not agree with Coleman. We modify Coleman’s
derivation and get a bounded energy density for the ground state of the sine-Gordon model for
β2 > 8π . In section 3 we adduce the explicit calculation of the energy density for the ground
state of the sine-Gordon model using the path-integral approach. In sections 4–6 we discuss
the relation of the constraint on the coupling constants β2 > 8π to (i) Coleman’s theorem,
asserting the non-existence Goldstone bosons in (1 + 1)-dimensional quantum field theories,
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to (ii) particle mass spectra of the sine-Gordon model and to (iii) soliton–soliton scattering.
In the conclusion we discuss the obtained results. In the appendix we follow [2] and evaluate
the generating functional of Green functions in the sine-Gordon model and demonstrate the
infrared stability and non-perturbative renormalizability of this model.

2. Coleman’s proof of the theorem on the unbounded vacuum energy density
for β2 > 8π

According to the Lagrangian (1.2) the Hamiltonian of the sine-Gordon model should be equal
to

HSG(x) = 1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

− α0

β2
(cos βϑ(x) − 1) (2.1)

where 	(x) = ϑ̇(x) is the conjugate momentum of the ϑ-field. Following Coleman [4] we
transcribe the Hamiltonian (2.1) into the form

HSG(x) = 1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

− α0

β2
cos βϑ(x) − γ0 (2.2)

where γ0 is an arbitrary constant, which is equal to

γ0 = −α0

β2
(2.3)

if the minimum of the classical potential energy is normalized to zero [4].
The aim of this section is two-fold corresponding to two scenarios of the evolution

of the sine-Gordon field. In the first scenario the parameter γ0 is arbitrary and additively
renormalizable, as has been assumed by Coleman. We show that in this scenario the ground
state of the sine-Gordon model suffers from an infrared disaster. In the infrared limit the
renormalized energy density of the ground state of the sine-Gordon model is equal to negative
infinity at any coupling constant β. This corresponds to the non-existence of the sine-Gordon
model. Hence, Coleman’s proof, when analysed with respect to the infrared stability of the
sine-Gordon model, leads to the suppression of the sine-Gordon model as quantum field theory.
In the second scenario the parameter γ0 is fixed to the value (2.3) that normalizes the potential
energy to zero. In this case the parameter γ0 is not additively renormalizable. This results in
the energy density of the ground state of the sine-Gordon model to be (i) positive definite in
the infrared limit and (ii) stable for any coupling constant β even if β2 > 8π .

First we analyse the stability of the sine-Gordon model following the scenario when γ0

is an additively renormalizable parameter. Introducing the infrared scale µ, which should be
finally taken in the limit µ → 0, we can redefine the interaction term in the Hamiltonian (2.2)
as follows [4]

cos βϑ(x) =
(

µ2


2

)β2/8π

: cos βϑ(x) :µ (2.4)

where the symbol : . . . :µ means normal ordering at the scale µ and 
 is the ultraviolet
cut-off. Expression (2.4) is a trivial consequence of the perturbative derivation of the vacuum
expectation value of the operator cos βϑ(x)

〈0| cos βϑ(x)|0〉 = e− 1
2 β2D(+)(0;µ) =

(
µ2


2

)β2/8π

(2.5)
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where D(+)(x;µ) is the two-point Wightman function defined by

D(+)(x;µ) = 〈0|ϑ(x)ϑ(0)|0〉 = 1

2π

∫ ∞

−∞

dk1

2k0
e−ikx = − 1

4π
ln[−µ2x2 + i0 · ε(x0)].

(2.6)

For x = (x0, x1) = 0 the two-point Wightman function is regularized by the ultraviolet cut-off

, |k1| � 
, and reads

D(+)(0;µ) = 1

4π
ln

(

2

µ2

)
. (2.7)

Since the vacuum expectation value of the normal-ordered operator : cos βϑ(x) : is unity,
〈0| : cos βϑ(x) : |0〉 = 1, relation (2.5) can be represented in the operator form (2.4). Of
course, the same result can be obtained by considering the ϑ-field as a free field and applying
Wick’s theorem [4, 6].

Assuming multiplicative renormalizability of the sine-Gordon model Coleman (i)
introduces the renormalized constant α determined by

α = α0

(
µ2


2

)β2/8π

(2.8)

and (ii) changes the scale of the normal ordering µ → M according to the recipe [4]

:cos βϑ(x) :µ→
(

M2

µ2

)β2/8π

: cos βϑ(x) :M . (2.9)

As a result the interaction term of the Hamiltonian of the sine-Gordon model acquires the form

Hint
SG(x) = − α

β2

(
M2

µ2

)β2/8π

: cos βϑ(x) :M (2.10)

where the parameter α is related to the bare parameter α0 by equation (2.8). This completes
the redefinition of the interaction part of the Hamiltonian (2.2).

Now according to Coleman we rewrite the free part of the Hamiltonian (2.2) as follows

H(0)
SG(x) = 1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

= :
1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

:µ +E0(µ) (2.11)

where E0(µ) is equal to [4]

E0(µ) =
∫ ∞

−∞

dk1

8π

2(k1)2 + µ2√
(k1)2 + µ2

. (2.12)

The regularized version of E0(µ) reads

E0(
,µ) =
∫ 


−


dk1

8π

2(k1)2 + µ2√
(k1)2 + µ2

= 
2

4π

√
1 +

µ2


2
= 
2

4π
+

µ2

8π
+ O

(
µ4


2

)
. (2.13)

The appearance of E0(
,µ) can easily be justified using the expansions of the field ϑ(x) and
the conjugate momentum 	(x) into plane waves [4, 7]

ϑ(x) = 1

2π

∫ ∞

−∞

dk1

2k0
(a(k1) e−ikx + a†(k1) eikx)

(2.14)

	(x) = 1

2π

∫ ∞

−∞

dk1

2i
(a(k1) e−ikx − a†(k1) eikx)
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where k0 =
√

(k1) + µ2, a(k1) and a†(k1) are annihilation and creation operators obeying the
standard commutation relation

[a(k1), a†(q1)] = (2π)2k0δ(k1 − q1). (2.15)

Assuming additive renormalizability of the parameter γ0 Coleman defines the renormalized
parameter γ

γ = γ0 + E0(µ) (2.16)

and redefines the free part of the Hamiltonian (2.2) as follows:

H(0)
SG(x) − γ0 = :H(0)

SG(x) :µ −γ. (2.17)

After this set of transformations Coleman asserts that ‘Assembling all this, we find the cut-off
independent form of the Hamiltonian density’:

HSG(x) = :
1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

− α

β2
cos βϑ(x) :µ − γ (2.18)

where all parameters α, β and γ are finite.
Changing then the scale of the normal ordering µ → M [4]

:H(0)
SG(x) :µ → :H(0)

SG(x) :M + E0(M) − E0(µ) = : H(0)
SG(x) :M +

1

8π
(M2 − µ2) (2.19)

Coleman arrives at the Hamiltonian

HSG(x) = :
1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

:M − α

β2

(
M2

µ2

)β2/8π

: cos βϑ(x) :M

+
1

8π
(M2 − µ2) − γ. (2.20)

The renormalized energy density of the ground state is equal to

Evac(M) = − α

β2

(
M2

µ2

)β2/8π

+
1

8π
(M2 − µ2) − γ. (2.21)

This is equation (3.7) of [4]. The renormalized energy density Evac(M) (2.21) depends
explicitly on the infrared cut-off µ, which should be taken in the limit µ → 0, whereas all
parameters α, β and γ are kept finite. Before one analyses the behaviour of the renormalized
energy density in the limit M → ∞, one has to take the limit µ → 0. Taking the limit µ → 0
one gets the renormalized energy density (2.21) equal to negative infinity for any finite scale M
and any coupling constant β �= 0. This makes the sine-Gordon model an extremely ill-defined
quantum field theory and nonsensical for any coupling constant β �= 0. This contradicts the
infrared stability of the sine-Gordon model (see, for example, the appendix this paper) and
gives no constraints on the value of the coupling constant like β2 < 8π .

Such an infrared disaster is a consequence of two of Coleman’s assumptions, the finiteness
of the parameter α and the additive renormalizability of the parameter γ . The finiteness of
the parameter α in (2.8) is questionable, since this entails the infinity of the parameter α0 in
the infrared limit µ → 0. The former is not really true. Indeed, as we have shown (see the
appendix in this paper) the sine-Gordon model is non-singular in the infrared limit (A.12) and
the correlation functions of the sine-Gordon model are finite in this limit. Moreover, if α0

would be infinite in the infrared limit the soliton solutions of the sine-Gordon model such as
(1.6) would not exist. Hence, there is no physical reason for the parameter α0 to be infinite at
µ → 0.
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Thus, Coleman’s scenario of the evolution of the sine-Gordon field with an arbitrary and
additively renormalizable parameter γ0 leads to the infrared disaster of the sine-Gordon model
and makes no constraints on the value of the coupling constant β.

Now let us analyse another scenario of the evolution of the sine-Gordon field with a
potential energy normalized to zero. In this case the parameter γ0 is fixed to the value (2.3)
and after the renormalization of the parameter α0 (2.8) one should get the renormalized γ , i.e.

γ = − α

β2

(

2

µ2

)β2/8π

. (2.22)

This yields the Hamiltonian (2.18) depending explicitly on the ultraviolet cut-off 


HSG(x) = :
1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

:µ − α

β2
: cos βϑ(x) :µ +

α

β2

(

2

µ2

)β2/8π

+ E0(
,µ).

(2.23)

Since unlike Coleman through the parameter γ0 the Hamiltonian depends on the ultraviolet
cut-off 
, one does not need to remove the ultraviolet divergence of E0(
,µ) appearing due
to the normal ordering of the kinetic term.

Following then Coleman and changing the scale of the normal ordering µ → M we arrive
at the Hamiltonian

HSG(x) = :
1

2
	2(x) +

1

2

(
∂ϑ(x)

∂x1

)2

:M − α

β2

(
M2

µ2

)β2/8π

: cos βϑ(x) :M

+
α

β2

(

2

µ2

)β2/8π

+ E0(
,M). (2.24)

The vacuum energy density defined by the Hamiltonian (2.24) is equal to

Evac(M) = α

β2

(

2

µ2

)β2/8π

− α

β2

(
M2

µ2

)β2/8π

+

2

4π

√
1 +

M2


2
. (2.25)

Due to the first term in the rhs of (2.25), which is absent in Coleman’s expression given by
equation (3.7) of [4], the energy density of the ground state of the sine-Gordon model is
positive definite in the infrared limit. At M = 
 the energy density does not depend on the
infrared cut-off and is proportional to Evac(
) ∼ 
2. The problem of this quadratic ultraviolet
divergence can easily be solved taking the full Hamiltonian (2.1) in the normal-ordered form.

Thus, we argue that the sine-Gordon model with the potential energy normalized to zero
is stable in the infrared limit and the energy of the ground state can never be negative for
arbitrary values of the coupling constant β even for β2 > 8π .

3. Vacuum energy density in the sine-Gordon model: non-perturbative calculation

Using the Lagrangian LSG(x) given by (1.2) one can obtain the Hamilton functional H(x0) of
the sine-Gordon model

H(x0) =
∫ ∞

−∞
dx1

{
1

2
:

[
	2(x) +

(
∂ϑ(x)

∂x1

)2
]

: −α0

β2
: [cos βϑ(x) − 1] :

}
. (3.1)
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The first two terms describe the contribution of the kinetic energy which should be always
taken in the normal-ordered form2. In quantum field theory the potential energy, given by the
last two terms in (3.1), should be normal ordered as well as the kinetic one. However, below
we consider two possibilities (i) the potential energy is normal-ordered and (ii) the potential
energy is not normal-ordered. We will show that in the case of the potential energy, taken in
the normal-unordered form, the energy of the ground state of the sine-Gordon model tends to
positive infinity.

The energy of the ground state Evac is equal to the vacuum expectation value of the
Hamilton functional H(x0)

Evac = 〈0|H(x0)|0〉 = −α0

β2

∫ ∞

−∞
dx1[〈0| cos βϑ(x)|0〉 − 1]. (3.2)

Since the integrand in (3.2) does not depend on x, instead of the energy of the ground state
Evac it is convenient to treat the vacuum energy density Evac defined by

Evac = lim
L→∞

Evac

L
= −α0

β2
[〈0| cos βϑ(0)|0〉 − 1] (3.3)

where L is the spatial volume.

(i) If the potential energy is taken in the normal-ordered form, the energy density Evac is
equal to zero, Evac = 0, due to 〈0| : cos βϑ(0) : |0〉 = 1 by definition of the normal
ordering.

(ii) In the case of the normal-unordered form of the potential energy the vacuum expectation
value 〈0|[cos βϑ(0) − 1]|0〉 is non-zero and can be calculated explicitly. In terms
of the partition function ZSG[0] defined by (A.15) the vacuum expectation value
〈0|[cos βϑ(0) − 1]|0〉 reads

α0

β2
[〈0| cos βϑ(0)|0〉 − 1] = lim

T ,L→∞
1

T L

α0

i

∂lnZSG[0]

∂α0
(3.4)

where T L defines a (1 + 1)-dimensional volume,
∫

d2x = ∫
dx0 dx1 = T L, at T ,L → ∞.

By the renormalization α0 → Z1α, where Z1 is a renormalization constant (A.13), we
obtain

α0

β2
[〈0| cos βϑ(0)|0〉 − 1] = lim

T ,L→∞
1

T L

α

i

∂lnZSG[0]

∂α
. (3.5)

Substituting (3.5) in (3.3) we determine the vacuum energy density Evac in terms of the partition
function ZSG[0] as follows:

Evac = − lim
T ,L→∞

1

T L

α

i

∂lnZSG[0]

∂α
. (3.6)

Due to (A.15) the vacuum energy density Evac is equal to

Evac = α

β2

(

2

M2

)β2/8π

+
2

i
lim

T ,L→∞
1

T L

∞∑
p=1

(−1)p

p!(p − 1)!

(
α

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])

2 We carry out the normal ordering at the infrared scale µ, which is taken finally in the limit µ → 0 (see the
appendix).
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− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]





 ∞∑

q=0

(−1)q

(q!)2

(
α

2β2

)2q

×
q∏

j=1

∫∫
d2xj d2yj exp


 β2

4π

q∑
j<k

(ln[−M2(xj − xk)
2 + i0]

+ ln[−M2(yj − yk)
2 + i0]) − β2

4π

q∑
j=1

q∑
k=1

ln[−M2(xj − yk)
2 + i0]






−1

(3.7)

where the second term is a ratio of two infinite series and M is a finite scale. One can show
that this term vanishes in the limit T ,L → ∞. For this aim we rewrite the vacuum energy
density (3.7) in the form

Evac = α

β2

(

2

M2

)β2/8π

+
2

i
lim

T ,L→∞

(
α

2β2

)2
[
−

∫
d2x

(−M2x2 + i0)β
2/4π

+
1

2

(
α

2β2

)2

×
∫

d2x d2y d2z[(−M2(x − y)2 + i0)(−M2z2 + i0)]β
2/4π

[(−M2x2 + i0)(−M2y2 + i0)(−M2(x − y)2 + i0)(−M2(y − z)2 + i0)]β
2/4π

+ · · ·
]

:

[
1 − T L

1

2

(
α

2β2

)2 ∫
d2x

(−M2x2 + i0)β
2/4π

+ T L
1

4

(
α

2β2

)4

×
∫

d2x d2y d2z[(−M2(x − y)2 + i0)(−M2z2 + i0)]β
2/4π

[(−M2x2 + i0)(−M2y2 + i0)(−M2(x − y)2 + i0)(−M2(y − z)2 + i0)]β
2/4π

+ · · ·
]

.

(3.8)

It is seen that in the limit T ,L → ∞ the ratio of the series is of order O(1/T L). This allows
us to rewrite (3.8) as follows:

Evac = α

β2

(

2

M2

)β2/8π

+
2

i
lim

T ,L→∞
O

(
1

T L

)
. (3.9)

Hence, in the limit T ,L → ∞ the vacuum energy density Evac is defined only by the first term
in (3.8). This gives

Evac = α

β2

(

2

M2

)β2/8π

. (3.10)

Since the renormalized coupling constant α is finite as well as the coupling constant β, in
the limit 
 → ∞ the vacuum energy density Evac tends to positive infinity as it is usual
for renormalizable quantum field theories with Hamilton functionals taken in the normal-
unordered form.

We would like to remind that Coleman’s expression for the energy density of the ground
state of the sine-Gordon model is linear in the coupling constant α0. Therefore, formally,
for the verification of Coleman’s result we can consider only the lowest order in perturbation
theory with respect to the coupling constant α0. Taking the potential energy in the normal-
unordered form and keeping only the lowest order in the α0 expansion the vacuum expectation
value 〈0| cos βϑ(0)|0〉 amounts to

〈0| cos βϑ(0)|0〉 = lim
µ→0

(
µ2


2

)β2/8π

= 0. (3.11)
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This gives the vacuum energy density (3.3) equal to Evac = α0/β
2, which reduces to

(3.10) after renormalization α0 = αZ1 = α(
2/M2)β
2/8π with the renormalization constant

Z1 = (
2/M2)β
2/8π defined by (A.13).

The vacuum energy density (3.10) tends to infinity at 
 → ∞. Such an infinity can
be removed by normal ordering. Hence, according to standard conclusions of quantum field
theory the energy of the ground state of the sine-Gordon model is equal to zero, if the Hamilton
functional is taken in the normal-ordered form.

Within the path-integral approach, where the vacuum energy density of the sine-Gordon
model is defined by the generating functional of Green functions ZSG[J ] for the external
source zero, J = 0, the energy density of the ground state of the sine-Gordon model can be
set zero normalizing ZSG[J ] to unity at J = 0, i.e. ZSG[0] = 1.

In the following sections we discuss our result for the ground state of the sine-Gordon
model to be bounded from below for β2 > 8π in relation to (i) Coleman’s theorem [10],
asserting the absence of Goldstone bosons and spontaneously broken continuous symmetry in
quantum field theories in (1 + 1)-dimensional spacetime with Wightman’s observables defined
on the test functions from the Schwartz class S(R2) [11], (ii) particle mass spectra and (iii)
soliton–soliton scattering in the sine-Gordon model.

4. Relation to Coleman’s theorem ‘There are no Goldstone bosons in two dimensions’

The constraint β2 > 8π on the coupling constants β appears as a result of the bosonization
of the massless Thirring model with fermion fields quantized in the chirally broken phase [1]
and the normalization of the Lagrangian of the free massless (pseudo)scalar field ϑ(x) to the
standard form L(x) = 1

2∂µϑ(x)∂µϑ(x). Coupling constants β2 > 8π define the nonlinear
response of the free massless (pseudo)scalar field ϑ(x) on external sources of Thirring fermion
fields. The wavefunction of the ground state of the free massless (pseudo)scalar field has been
obtained through the bosonization of the BCS-type wavefunction of the ground state of the
massless Thirring model in the chirally broken phase [8]. This wavefunction is not invariant
under chiral transformations, related to the constant shifts of the free massless (pseudo)scalar
field ϑ(x) → ϑ(x) + α, and caused fully by the collective zero mode of this field [7–9]. The
collective zero mode of the free massless (pseudo)scalar field ϑ(x), describing the motion of
the ‘centre of mass’ of the system, is responsible for the infrared divergences of the two-point
Wightman functions [7], which lead to the vanishing of the generating functional of Green
functions Z[J ]

Z[J ] =
∫

Dϑ exp

{
i
∫

d2x

[
1

2
∂µϑ(x)∂µϑ(x) + ϑ(x)J (x)

]}
of the field ϑ(x), where J (x) is the external source of this field.

The non-vanishing value of Z[J ] can be obtained by the removal of the collective zero
mode from the spectrum of observable modes. This can be carried out by the constraint on
the external source

∫
d2xJ (x) = J̃ (0) = 0 [2, 7, 8] (see also (A.3) of the appendix)3.

As has been pointed out by Wightman [11] the quantum field theory of a free massless
(pseudo)scalar field in (1 + 1)-dimensional spacetime does not exist from a mathematical
point of view, if Wightman’s observables are defined on the test functions h(x) from the
Schwartz class S(R2). In this case Wightman’s positive definiteness condition is violated due
to infrared divergences of the two-point Wightman functions [11]. Nevertheless, Wightman

3 Recall that the removal of the collective zero mode from the spectrum of observable modes has been discussed by
Hasenfratz [12] in connection with a correct formulation of Feynman rules in one- and two-dimensional nonlinear
σ -models with O(N) symmetry.
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has argued that the problem of the violation of Wightman’s positive definiteness condition
can be avoided defining Wightman’s observables on the test functions from the Schwartz
class S0(R

2) = {h(x) ∈ S(R2); h̃(0) = 0}, where h̃(k) is the Fourier transform of the test
function h(x). As has been shown in [13] the quantum field theory of the free massless
(pseudo)scalar field with Wightman’s observables defined on the test functions from S0(R

2)

is equivalent to the quantum field theory determined by the generating functional of Green
functions Z[J ] with external sources obeying the constraint

∫
d2xJ (x) = J̃ (0) = 0. Since

the collective zero mode is not induced, such a quantum field theory does not suffer from
infrared divergences of the two-point Wightman functions [7].

In [10], Coleman has reformulated Wightman’s ban on the construction of the quantum
field theory of a free massless (pseudo)scalar field in (1 + 1)-dimensional spacetime with
Wightman’s observables defined on the test functions h(x) ∈ S(R2) as non-existence of
Goldstone bosons, massless (pseudo)scalar fields, and spontaneously broken continuous
symmetry in (1 + 1)-dimensional quantum field theories. The removal of the collective zero
mode from the system allows us to formulate in (1 + 1)-dimensional spacetime a consistent
quantum field theory of a free massless (pseudo)scalar field without infrared divergences. This
quantum field theory is equivalent to Wightman’s version of the quantum field theory of a free
massless (pseudo)scalar field with Wightman’s observables defined on the test functions from
S0(R

2). Since Coleman’s theorem concerns only (1 + 1)-dimensional quantum field theories
with Wightman’s observables defined on the test functions from S(R2) and tells nothing
about the absence of Goldstone bosons and spontaneous breaking of continuous symmetry in
quantum field theories with Wightman’s observables defined on the test functions from S0(R

2)

[8, 13], the coupling constants, obeying the constraint β2 > 8π , do not contradict Coleman’s
theorem [10]. This is because such coupling constants are related to the quantum field theory
with Wightman’s observables defined on the test functions from S0(R

2) [8, 13].
The sine-Gordon model has been obtained through the bosonization of the massive

Thirring model with fermion fields quantized relative to the non-perturbative BCS-type
superconducting vacuum [1]. The constraint β2 > 8π on the coupling constant β has appeared
naturally due to the normalization of the kinetic term of the Lagrangian of the sine-Gordon
field to 1

2∂µϑ(x)∂µϑ(x). Therefore, the sine-Gordon field ϑ(x) has inherited all properties
of the free massless (pseudo)scalar field ϑ(x), bosonizing the massless Thirring model in
the chirally broken phase, which have been extended by the inclusion of the sine-Gordon
interaction. This means that in our approach the sine-Gordon model is a quantum field theory
of a self-coupled (pseudo)scalar field ϑ(x) with Wightman’s observables defined on the test
functions from the Schwartz class S0(R

2) (see the appendix).

5. Particle mass spectra

According to Korepin et al [15] the sine-Gordon model describes three sorts of particle states
with masses: (i) Mq = √

α0, (ii) Ms = Ms̄ = 8
√

α0/β
2 and (iii) M

(n)
br = 2Ms sin νn, where

νn = nβ2/16 with n = 1, 2, . . . , 8π/β2.
The particles with mass Mq = √

α0 are the quanta of the sine-Gordon field in the
perturbative regime β2 	 4π , when the potential V [ϑ(x)] = (α0/β

2)(1 − cos βϑ(x)) can be
expanded in powers of β2,

V [ϑ(x)] = 1
2α0ϑ

2(x) − 1
24α0β

2ϑ4(x) + · · · . (5.1)

These quanta are described by the operators of annihilation and creation in the expansion of
the ϑ-field into plane waves such as (2.14).
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The particles with mass Ms = Ms̄ = 8
√

α0/β
2 are single solitons and antisolitons, whose

masses do not contain quantum corrections [19]. The single solitons and antisolitons are
described by (1.6). The soliton–soliton and the soliton–antisoliton states read [16–18]

ϑss(x
0, x1) = 4

β
tan−1

(
u

sinh(
√

α0γ x1)

cosh(
√

α0γ ux0)

)
(5.2)

ϑss̄(x
0, x1) = 4

β
tan−1

(
1

u

sinh(
√

α0γ ux0)

cosh(
√

α0γ x1)

)

where γ = 1/
√

1 − u2 is the Lorentz factor.
The total energies of these soliton–soliton and soliton–antisoliton states are equal to

E = 2Msγ [16, 18].
The particles with mass M

(n)
br = 2Ms sin νn are the breather solutions. Breathers describe

soliton–antisoliton bound states [19]. In the rest frame the classical solution corresponding to
the nth quantum state reads [17, 19]

ϑ
(n)
br (x0, x1) = 4

β
tan−1

(
tan νn

sin(
√

α0x
0 cos νn)

cosh(
√

α0x1 sin νn)

)
. (5.3)

As has been shown by Dashen et al [19] small quantum fluctuations around a one-soliton
solution lead to a change of the soliton (antisoliton) mass as follows

Ms = Ms̄ = 8
√

α0

β2
−

√
α0

π
= 8

√
α0

β̃2
(5.4)

where we have denoted

β̃2 = β2

1 − β2/8π
. (5.5)

The masses of breathers are then changed as M
(n)
br = 2Ms sin ν̃n, where ν̃n = nβ̃2/16 with

n = 1, 2, . . . , 8π/β̃2 [19] and Ms given by (5.4).
This contribution of quantum fluctuations to the soliton (antisoliton) mass has been

obtained in [19] for β2 < 8π . At β2 = 8π formula (5.5) predicts a singularity.
However, according to Zamolodchikov and Zamolodchikov [20] ‘The singularity of the

sine-Gordon theory at β2 = 8π . . . scarcely means the failure of the theory with β2 � 8π ,
but rather indicates a lack of superrenormalizability property and suggests that another
renormalization prescription is necessary at β2 � 8π ’.

6. Quantum fluctuations around classical solutions, renormalization
and soliton–soliton scattering

The non-perturbative renormalization of the sine-Gordon model has been carried out in [2] (see
also the appendix in this paper). We apply this renormalization procedure to the calculation of
the contribution of quantum fluctuations around a soliton (antisoliton) solution. The result can
be treated as a continuation of the theory to the region of coupling constants with β2 > 8π .
We start with the partition function

ZSG =
∫

Dϑ exp

{
i
∫

d2x

[
1

2
∂µϑ(x)∂µϑ(x) +

α0

β2
(cos βϑ(x) − 1)

]}

=
∫

Dϑ exp

{
i
∫

d2xL[ϑ(x)]

}
. (6.1)
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Following Dashen et al [19] we treat the fluctuations of the sine-Gordon field ϑ(x) around the
classical solution ϑ(x) = ϑcl(x) + ϕ(x), where ϑcl(x) is any classical solution, satisfying the
equations of motion (1.5), and ϕ(x) is the fluctuating field.

Substituting ϑ(x) = ϑcl(x) + ϕ(x) into the exponent of the integrand of (6.1) and using
the equations of motion (1.5) for the classical solution ϑcl(x) we get

ZSG = exp

{
i
∫

d2xL[ϑcl(x)]

}∫
Dϕ exp

{
i
∫

d2x

[
1

2
∂µϕ(x)∂µϕ(x) +

α0

β
sin βϑcl(x)ϕ(x)

+
α0

β2
(cos(βϑcl(x) + βϕ(x)) − cos βϑcl(x))

]}
. (6.2)

In the Gaussian approximation [19] the integrand reads

ZSG = exp

{
i
∫

d2xL[ϑcl(x)]

}

×
∫

Dϕ exp

{
i
∫

d2x
[

1
2∂µϕ(x)∂µϕ(x) − 1

2α0 cos βϑcl(x)ϕ2(x)
]}

. (6.3)

The exponent of the integral over ϕ(x) coincides with that in equation (3.4) of [19]. Integrating
over ϕ(x) we obtain

ZSG = 1√
Det(� + α0 cos βϑcl)

exp

{
i
∫

d2x L[ϑcl(x)]

}

= exp

{
i
∫

d2x Leff[ϑcl(x)]

}
(6.4)

where the effective Lagrangian Leff[ϑcl(x)] is defined by

Leff[ϑcl(x)] = L[ϑcl(x)] + i
1

2
〈x|ln

(
1 +

α0

� + α0
(cos βϑcl(x) − 1)

)
|x〉. (6.5)

The wavefunctions |x〉 are normalized by 〈x|y〉 = δ(2)(x − y) [1, 21].
The first-order correction to L[ϑcl(x)] is equal to

L(1)[ϑcl(x)] = −1

2

∫
d2k

(2π)2i

α0

α0 − k2 − i0
(cos βϑcl(x) − 1)

= − α0

8π

∫ 
2

0

dk2
E

α0 + k2
E

(cos βϑcl(x) − 1) = − α0

8π
ln

(

2

α0

)
(cos βϑcl(x) − 1)

(6.6)

where 
 is the ultraviolet cut-off. We carried out the Wick rotation to the Euclidean momentum
space d2k = id2kE and k2 = −k2

E .
For the effective Lagrangian Leff[ϑcl(x)] we obtain

Leff[ϑcl(x)] = 1

2
∂µϑcl(x)∂µϑcl(x) +

α0

β2

[
1 − β2

8π
ln

(

2

α0

)]
(cos βϑcl(x) − 1). (6.7)

Now we have to renormalize the coupling constant α0 in order to remove the ultraviolet
cut-off 
. The coupling constant α(M) renormalized at the normalization scale M is
defined by α(M) = Z−1

1 (β,M, α0;
)α0 (see the appendix). The renormalization constant
Z1(β,M, α0;
) is equal to (A.13)

Z1(β,M, α0;
) =
(


2

M2

)β2/8π

= 1 +
β2

8π
ln

(

2

M2

)
+ · · · . (6.8)
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The renormalization of the effective potential in the effective Lagrangian (6.7) runs as
follows. Treating only the constant factor in front of (cos βϑcl(x) − 1) we get

α0

β2

[
1 − β2

8π
ln

(

2

α0

)]
= αZ1

β2

[
1 − β2

8π
ln

(

2

αZ1

)]
= α

β2

[
1 − β2

8π
ln

(

2

α

)
+ (Z1 − 1)

]

= α

β2

[
1 − β2

8π
ln

(

2

α

)
+

β2

8π
ln

(

2

M2

)]
= α

β2

[
1 − β2

8π
ln

(
M2

α

)]
(6.9)

where we have dropped the terms of order of O(β4).
Thus, the renormalized effective Lagrangian of the sine-Gordon model reads

L(r)
eff [ϑcl(x)] = 1

2
∂µϑcl(x)∂µϑcl(x) +

α

β2

[
1 − β2

8π
ln

(
M2

α

)]
(cos βϑcl(x) − 1) (6.10)

where we have denoted α = α(M).
The non-perturbative correction, caused by quantum fluctuations around a classical

solution, to the effective potential of the sine-Gordon model can be written as

L(r)
eff [ϑcl(x)] = 1

2
∂µϑcl(x)∂µϑcl(x) +

α

β2

( α

M2

)β2/8π

(cos βϑcl(x) − 1). (6.11)

This agrees with our expression for the energy density of the ground state of the sine-Gordon
model (3.10), where the ultraviolet cut-off is equal to the renormalized mass of the sine-Gordon
quanta, 
 = √

α.
The most convenient choice of the renormalization point is M = α(M). This yields

L(r)[ϑcl(x)] = 1

2
∂µϑcl(x)∂µϑs(x) +

α

β2
(cos βϑcl(x) − 1). (6.12)

Since we have not specified the classical solution, our result is valid for quantum corrections
around an arbitrary classical solution of the sine-Gordon model. Our result of the calculation
of the quantum fluctuations agrees with that carried out by Korepin et al [15].

According to the renormalized Lagrangian (6.10) the soliton (antisoliton) mass is
equal to Ms = Ms̄ = 8

√
α/β2. The masses of breathers would be changed as follows

M
(n)
br = (16

√
α/β2) sin νn with νn = nβ2/16 and n = 1, 2, . . . , 8π/β2.

Hence, quantum fluctuations, calculated with the renormalization prescription expounded
above, do not lead to the appearance of a singular point in the sine-Gordon model and allow
the continuation of the theory to the region β2 � 8π as has been suspected by Zamolodchikov
and Zamolodchikov [20].

As has been pointed out in [1] for β2 > 8π the (1 + 1)-dimensional world is populated
mainly by solitons and antisolitons. Breather states are prohibited for β2 > 8π . This agrees
with the assertion by Zamolodchikov and Zamolodchikov [20], which reads in our notation: ‘At
β2 > 8π all bound states including the “elementary” particle of the sine-Gordon Lagrangian
(1.2) become unbound. Thus, at β2 � 8π the spectrum contains solitons and antisolitons
only’.
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The phase shift for soliton–soliton scattering has been calculated by Weisz in dependence
on the rapidity difference θ and the sine-Gordon coupling constant λ > 1 [22]. For
−∞ < Re θ < +∞ and |Im θ | < min[π, λπ ] the integral representation for the phase
shift reads

δss(θ) = 1

2

∫ ∞

0

dt

t

sin
(

θt
π

)
sinh

(
1
2 (λ − 1)t

)
sin

(
1
2λt

)
cosh

(
1
2 t

) (6.13)

and ‘exhibits the absence of physical bound states for λ > 1’ [22]. In our renormalization
procedure expounded above λ = β2/8π > 1.

Thus, the phase shift δss(θ), defined by (6.13), should describe soliton–soliton scattering
for the sine-Gordon coupling constants obeying the constraint β2 > 8π .

The absence of contributions from soliton–antisoliton bound states to the phase shift
δss(θ) of soliton–soliton scattering for β2 > 8π agrees with conclusions by Zamolodchikov
and Zamolodchikov [20] and ours, concerning the population of the (1 + 1)-dimensional world
by only solitons and antisolitons for β2 > 8π .

7. Conclusion

We have shown that the vacuum energy density of the ground state of the sine-Gordon
model is bounded from below even for β2 > 8π . We have found some unconvincing
assumptions of Coleman’s proof. These are (i) the parameter γ0, normalizing to zero
the classical potential energy of the sine-Gordon model, has been assumed additively
renormalizable and set finite after renormalization, (ii) the renormalized Hamiltonian has
been found depending on the infrared cut-off µ with divergent contributions in the limit
µ → 0 and (iii) the vacuum energy density (2.21) calculated by Coleman is equal to
Evac(M) = −∞ in the infrared limit µ → 0 for any finite scale M and coupling constant
β, whereas the sine-Gordon model is well defined in the infrared limit µ → 0 (see the
appendix).

Our direct calculation of the vacuum energy density is non-perturbative and exact. We
have shown explicitly that the vacuum energy density of the sine-Gordon model can never
be a negative quantity if the potential energy is normalized to zero as is done at the classical
level.

Summarizing the obtained results we can conclude that in the region of coupling constants,
obeying the constraint β2 > 8π , the sine-Gordon model can be treated well. For the coupling
constants β2 > 8π the sine-Gordon model describes only solitons and antisolitons without
breathers. The amplitudes of scattering of soliton by soliton and soliton by antisoliton are well
defined for β2 > 8π without soliton–antisoliton bound state contributions to the intermediate
states. In our approach the sine-Gordon model for coupling constants β2 > 8π is a quantum
field theory with Wightman’s observables defined on the test functions from S0(R

2) [7, 8, 13].
Therefore, it does not contradict Coleman’s theorem, asserting the absence of spontaneously
broken continuous symmetry in quantum field theories with Wightman’s observables defined
on the test functions from S(R2).

Acknowledgment

This work was supported in part by Fonds zur Förderung der Wissenschaftlichen Forschung
P11387-PHY.



Is the energy density of the ground state of the sine-Gordon model unbounded from below for β2 > 8π? 7853

Appendix. Non-perturbative renormalizability of the sine-Gordon model

As has been shown in [2] the massless Thirring model with non-vanishing external sources is
equivalent to the sine-Gordon model, where the mass of Thirring fermion fields m is considered
as an external source σ(x) = −m for the scalar fermion density ψ̄(x)ψ(x). Therefore, the
properties of non-perturbative renormalizability of the massless Thirring model investigated
in [2] should be fully extended to the sine-Gordon (SG) model.

The generating functional of Green functions in the SG model we define as

ZSG[J ] =
∫

Dϑ exp i
∫

d2x

{
1

2
∂µϑ(x)∂µϑ(x) +

α0

β2
(cos βϑ(x) − 1) + ϑ(x)J (x)

}
(A.1)

where J (x) is an external source of the ϑ(x)-field.
The Lagrangian of the SG model is invariant under the transformations

ϑ(x) → ϑ ′(x) = ϑ(x) +
2πn

β
(A.2)

where n is an integer number running over n = 0,±1,±2, . . . . In order to get the generating
functional ZSG[J ] invariant under the transformations (A.2) it is sufficient to restrict the class
of functions describing the external source of the ϑ-field and impose the constraint [7]∫

d2x J (x) = 0. (A.3)

Non-perturbative renormalizability of the SG model we understand as a possibility to remove
all divergences by renormalizing the coupling constant α0. Indeed, since the coupling constant
β is related to the coupling constant of the Thirring model g [1, 2] which is unrenormalized
g0 = g, so the coupling constant β should possess the same property, i.e. β0 = β. Hence,
only the coupling constant α0 should undergo renormalization.

The Lagrangian of the SG model written in terms of bare quantities reads

LSG(x) = 1

2
∂µϑ0(x)∂µϑ0(x) +

α0

β2
(cos βϑ0(x) − 1). (A.4)

Since β is the unrenormalized coupling constant, the field ϑ0(x) should be also unrenormalized,
ϑ0(x) = ϑ(x). This means that there is no renormalization of the wavefunction of the ϑ-field.
As a result the Lagrangian LSG(x) of the SG model in terms of renormalized quantities can be
written by

LSG(x) = 1

2
∂µϑ(x)∂µϑ(x) +

α

β2
(cos βϑ(x) − 1) + (Z1 − 1)

α

β2
(cos βϑ(x) − 1)

= 1

2
∂µϑ(x)∂µϑ(x) + Z1

α

β2
(cos βϑ(x) − 1) (A.5)

where Z1 is the renormalization constant of the coupling constant α. The renormalized
coupling constant α is related to the bare one by the relation

α = Z−1
1 α0. (A.6)

Renormalizability of the SG model as well as the Thirring model we understand as the
possibility to replace the ultraviolet cut-off 
 by another finite scale M by means of the
renormalization constant Z1 in the limit µ → 0. According to the general theory of
renormalizations [14] Z1 should be a function of the coupling constants β, α, the infrared
cut-off µ, the ultraviolet cut-off 
 and a finite scale M:

Z1 = Z1(β, α,M;µ,
). (A.7)
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Now let us proceed to the evaluation of the generating functional (A.1). For this aim expand
the integrand of the generating functional ZSG[J ] in powers of α0 cos βϑ(x). This gives

ZSG[J ] = lim
µ→0

e
−i

∫
d2x

α0
β2

∞∑
n=0

in

n!

(
α0

β2

)n n∏
i=1

∫
d2xi

∫
Dϑ

n∏
i=1

cos βϑ(xi)

× exp i
∫

d2x

{
1

2
∂µϑ(x)∂µϑ(x) − 1

2
µ2ϑ2(x) + ϑ(x)J (x)

}
. (A.8)

The integration over the ϑ-field can be carried out explicitly and we get

ZSG[J ] = lim
µ→0

e
−i

∫
d2x

α0
β2

∞∑
n=0

in

n!

(
α0

2β2

)n n∑
p=0

n!

(n − p)!p!

n−p∏
j=1

p∏
k=1

∫
d2xj d2yk

× exp


1

2
nβ2i�(0;µ) + β2

n−p∑
j<k

i�(xj − xk;µ) + β2
p∑

j<k

i�(yj − yk;µ)

−β2
n−p∑
j=1

p∑
k=1

i�(xj − yk;µ)


 exp



∫

d2xβ


n−p∑

j=1

i�(xj − x;µ)

−
p∑

k=1

i�(yj − x;µ)

]
J (x) +

∫∫
d2x d2y

1

2
J (x)i�(x − y;µ)J (y)

}
(A.9)

where the causal Green functions �(x − y;µ) and �(0;µ) are defined by [2, 7]

�(x − y;µ) = iθ(x0 − y0)D(+)(x − y;µ) + iθ(y0 − x0)D(−)(y − x;µ)

= − i

4π
ln[−µ2(x − y)2 + i0]

�(0;µ) = i

4π
ln

(

2

µ2

)
.

Taking the limit µ → 0 we reduce the rhs of (A.9) to the form

ZSG[J ] = e
−i

∫
d2x

α0
β2

∞∑
p=0

(−1)p

(p!)2

(
α0

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

[(
M2


2

)β2/8π
]2p

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])

− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]




× exp


 β

4π

∫
d2x

p∑
j=1

ln

[
(xj − x)2 + i0

(yj − x)2 + i0

]
J (x)

+
1

8π

∫∫
d2x d2yJ (x)ln[−M2(x − y)2 + i0]J (y)




× lim
µ→0

exp

{
− 1

4π
ln

(
M

µ

)(∫
d2x J (x)

)2
}

. (A.10)
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Due to the constraint (A.3) the generating functional ZSG[J ] does not depend on the infrared
cut-off µ. Using (A.3) we get

ZSG[J ] = e
−i

∫
d2x

α0
β2

∞∑
p=0

(−1)p

(p!)2

(
α0

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

[(
M2


2

)β2/8π
]2p

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])

− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]




× exp


 β

4π

∫
d2x

p∑
j=1

ln

[
(xj − x)2 + i0

(yj − x)2 + i0

]
J (x)

+
1

8π

∫∫
d2x d2yJ (x)ln[−M2(x − y)2 + i0]J (y)


 . (A.11)

Passing to a renormalized constant α, α0 = Z1α, we recast the rhs of (A.11) into the form

ZSG[J ] = e
−i

∫
d2xZ1

α

β2

∞∑
p=0

[
Z1

(
M2


2

)β2/8π
]2p

(−1)p

(p!)2

(
α

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])

− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]




× exp


 β

4π

∫
d2x

p∑
j=1

ln

[
(xj − x)2 + i0

(yj − x)2 + i0

]
J (x)

+
1

8π

∫∫
d2x d2yJ (x)ln[−M2(x − y)2 + i0]J (y)


 . (A.12)

Setting

Z1 =
(


2

M2

)β2/8π

(A.13)

we are left with the dependence of the generating functional ZSG[J ] on the ultraviolet cut-off

 only in the insignificant constant factor

ZSG[J ] = e
−i

∫
d2x α

β2

(

2

M2

)β2/8π ∞∑
p=0

(−1)p

(p!)2

(
α

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])
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− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]




× exp


 β

4π

∫
d2x

p∑
j=1

ln

[
(xj − x)2 + i0

(yj − x)2 + i0

]
J (x)

+
1

8π

∫∫
d2x d2yJ (x)ln[−M2(x − y)2 + i0]J (y)


 . (A.14)

The generating functional (A.14) is expressed in terms of the renormalized constant α, the
constant β and the finite scale M. The ultraviolet cut-off 
 enters only in the insignificant
constant factor, which does not affect the result of the evaluation of correlation functions. This
factor can be removed by redefinition of the path-integral measure of the generating functional
ZSG[J ].

Thus, the generating functional ZSG[J ] (A.14) can be applied to the evaluation of any
renormalized correlation function of the SG model. This testifies the complete non-perturbative
renormalizability of the SG model.

Using (A.14) we evaluate the partition function ZSG[0]. It is equal to

ZSG[0] = e
−i

∫
d2x α

β2

(

2

M2

)β2/8π ∞∑
p=0

(−1)p

(p!)2

(
α

2β2

)2p p∏
j=1

∫∫
d2xj d2yj

× exp


 β2

4π

p∑
j<k

(ln[−M2(xj − xk)
2 + i0] + ln[−M2(yj − yk)

2 + i0])

− β2

4π

p∑
j=1

p∑
k=1

ln[−M2(xj − yk)
2 + i0]


 . (A.15)

This expression we use for the calculation of the vacuum energy density of the SG model.
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[19] Dashen R F, Hasslacher B and Neveu A 1975 Phys. Rev. D 11 3424
[20] Zamolodchikov Alexander B and Zamolodchikov Alexey B 1979 Ann. Phys., NY 120 253
[21] Bertlmann R A 1996 Anomalies in Quantum Field Theory (Oxford: Oxford Science Publications/Clarendon)
[22] Weisz P H 1977 Nucl. Phys. B 122 1


